A New Oxygen-Insertion Reaction into Silicon-Silicon Bonds with Tertiary Amine Oxides

Hideki Sakurai, Mitsuo Kira, and Makoto Kumada*

Department of Chemistry, Faculty of Science, Tohoku University, Sendai *Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto (Received December 1, 1970)

We reported an oxidation reaction of organodisilanes with perbenzoic acid.¹⁾ Spialter and Austin subsequently described oxidative cleavage of the siliconsilicon bonds with oxides of nitrogen²⁾ and ozone.³⁾ These reagents are regarded as electrophilic and kinetic investigations led to the suggestion of a mechanism similar to that of epoxidation.^{1,3)} We now wish to describe a new and mechanistically interesting insertion reaction of oxygen from tertiary amine oxides into silicon-silicon bonds. The reaction also constitutes a new reduction of amine oxides.⁴⁾

Trimethylamine N-oxide reacts exothermally with phenoxypentamethyldisilane in dimethyformamide (DMF), yielding phenoxypentamethyldisiloxane in a moderate yield.⁵⁾ Oxidation of hexamethyldisilane to hexamethyldisiloxane with trimethylamine N-oxide required somewhat drastic conditions, the yield being 71% after heating at 90—100°C for 6 hr in DMF. Vinylpentamethyldisilane afforded vinylpentamethyldisiloxane in contrast to the reaction with perbenzoic acid.¹⁾

Pyridine N-oxide reacts more slowly than does trimethylamine N-oxide. Treatment of phenoxypentamethyldisilane with pyridine N-oxide in DMF,

Table 1. Second Order rate constants for oxidation reaction of phenoxypentamethyldisilanes with pyridine N-oxide in toluene at $135.0^{\circ}\mathrm{C}^{a}$

Substituent	$l^{10^5} k,^{b)} l \mathrm{mol^{-1} sec^{-1}}$	
p-CH ₃ O	6.43 ± 0.27	
m -CH $_3$	6.32 ± 0.16	
H	9.74 ± 0.50	
<i>p</i> -Cl	21.9 ± 0.7	
$m ext{-}\mathrm{CF}_3$	38.7 ± 2.4	
$p ext{-}\mathrm{CH_3CO}$	37.5 ± 0.8	

- a) Initial concentrations of silanes and pyrdine N-oxide were 0.02—0.21 mol l^{-1} and 0.03—0.3 mol l^{-1} , respectively.
- b) Average of two to four runs.

dioxane or toluene afforded phenoxypentamethyldisiloxane in over 85% yield. Although hexamethyl disilane did not react with pyridine N-oxide, other organodisilanes such as phenyl, 1,2-diphenyl-, and 1,1-diphenyl-substituted permethylated disilanes gave the corresponding disiloxanes as single products together with pyridine in dioxane.

$$\begin{array}{ccc} X-SiMe_2SiMe_3\,+\,C_5H_5NO\, &\longrightarrow \\ \\ X-SiMe_2OSiMe_3\,+\,C_5H_5N \end{array}$$

These results suggest a nucleophilic attack of N-oxides on the silicon-silicon bond as a primary step, which was supported by kinetic studies.

The extent of reaction of substituted phenoxypentamethyldisilane with pyridine N-oxide in toluene at 135.0°C was followed by the disappearance of disilanes (glpc), the second-order rate law being found to hold accurately. The results are listed in the Table.

A tolerably good Hammett plot was obtained between $\log (k/k_{\rm H})$ and σ (r=0.971). A positive reaction constant ρ = +1.18 indicates nucleophilic attack of N-oxides at silicon to be involved in the rate-determining step.

The mechanism and rate parameters of the reaction appeared interesting in connection with the peracid oxidation of disilanes.¹⁾

¹⁾ H. Sakurai, T. Imoto, N. Hayashi, and M. Kumada, J. Amer. Chem. Soc., 87, 4001 (1965).

²⁾ L. Spialter and J. D. Austin, ibid., 88, 1828 (1966).

³⁾ L. Spialter and J. D. Austin, Inorg. Chem., 5, 1975 (1966).

⁴⁾ K. Naumann, G. Zon and K. Mislow, J. Amer. Chem. Soc., 91, 2788, 7012 (1969), reported the use of hexachlorodisilane as a reducing agent for phosphine oxides, amine oxides, and sulfoxides. They suggested the intermediacy of hexachlorodisiloxane formed by a mechanism involving a free trichlorosilyl anion. In the present study, however, it has been disclosed that organodisilanes are generally capable of reducing amine oxides.

⁵⁾ Yields of disiloxane depend on the degree of dehydration of Me₃NO·2H₂O. Main by-products were phenol and (Me₃-SiMe₂Si)₂O through hydrolysis.